TLV PowerTrap

модель **GP5C** из чугуна из нержавеющей стали

КОМПАКТНЫЙ МЕХАНИЧЕСКИЙ НАСОС ДЛЯ УДАЛЕНИЯ И ПЕРЕКАЧИВАНИЯ КОНДЕНСАТА

Особенности

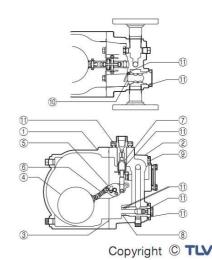
Насос с линейным расположением входа/выхода, с низкой высотой подпора. Идеален для небольших потребителей пара в открытых системах.

- Удобен для перекачивания конденсата с высокой температурой без кавитации.
- 2. Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с очень низким уровнем наполнения (подпора) 155 мм.
- Боковая ориентация подводящих трубопроводов уменьшение затрат на монтаж.
- 5. Удобный доступ к механизму за счет его бокового расположения.
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.
- Компактная конструкция позволяет располагать устройство на ограниченных площадях.

Основные характеристики

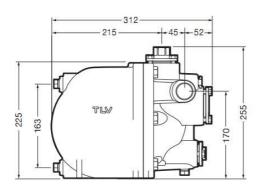
Модель		GP5C			
Материал корпуса		Чугун		Нержавеющая сталь	
	Вход перекачиваемой среды & Выход	Резьбовое	Фланцевое*	Резьбовое	Фланцевое*
Присоединение	Движущая среда & Вентиляция		Резьб	бовое	
	Вход перекачиваемой среды & Выход	1" / 1"	DN25 / DN25	1" / 1"	DN25 / DN25
Размер	Движущая среда	1/2"			
	Вентиляция	1/4"			
Максимальное рабочее давление (бар изб.) РМО		5			
Максимальная рабочая температура (°C) ТМО		185			
Диапазон давления движущей среды (бар изб.)		0,3 – 5			
Максимальное допустимое противодавление		на 0,5 бар меньше, чем давление движущей среды			
Объем перекачивания за один цикл (литр)		приблизительно 1,5			
Движущая среда **		Насыщенный пар, сжатый воздух, азот			
Перекачиваемая среда ***		Конденсат водяного пара			

1 бар=0,1Мпа

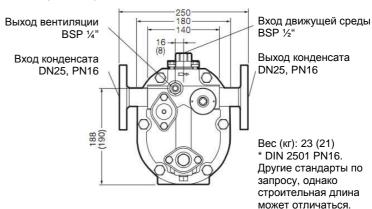

Максимальное давление (бар изб) РМА: 8 Максимальная допустимая температура (°C) ТМА: 220

Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах.

Nº	Название дет	али	Материал	DIN*	ASTM/AISI*
4 Kanana		Чугун FC250	0.6025	A126 CI.B	
	1 Корпус		Нерж. сталь** A351 Gr.CF8M	1.4312	-
2	2 Крышка		Чугун FC250	0.6025	A126 CI.B
			Нерж. сталь** A351 Gr.CF8M	1.4312	-
3 ^M	Уплотнение крышки		PTFE	PTFE	PTFE
4 ^F	Поплавок		Нерж. сталь SUS316L	1.4404	AISI316L
5 ^{R3}			Нержавеющая сталь	-	-
6 ^{R8}	Пружина переключения		Нержавеющая сталь	-	-
7 R1	Механизм клапана	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
	вентиляции	Седло	Нерж. сталь SUS440C	1.4125	AISI440C
8 ^{R4}	Обратный клапан на	а выходе	Нерж. сталь SUS304	1.4301	AISI304
9 ^{R2}	Заглушка вентиляции		Нержавеющая сталь	-	-
10 ^{R5}			Нерж. сталь SUS304	1.4301	AISI304
11 ^M	Комплект уплотнений		Нержавеющая сталь	-	-


^{*} эквивалентные материалы ** входит в R3 (ремкомплект переключающего механизма) Ремкомплекты: (M) детали для обслуживания, (R1-R6) детали для ремонта, (F) поплавок При заказе ремкомплектов, рекомендуется заказать комплект (М), чтобы заменить уплотнения

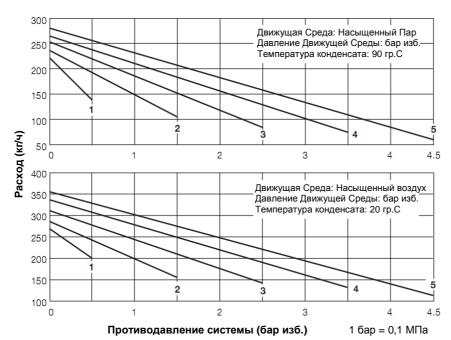
^{*} накрученные фланцы ** Не применять с опасными, легковоспламеняемыми и токсичными средами 1 бар=0,1Мп *** не применять для перекачивания жидкостей с удельной плотностью ниже 0,85 или выше 1, токсичных и легковоспламеняемых жидкостей КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ):


Consulting & Engineering Service

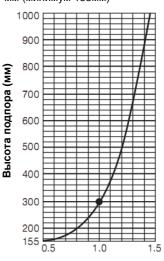
Размеры

Резьбовой *
Выход вентиляции ВSP ½"
Вход конденсата ВSP 1"
Выход конденсата ВSP 1"

• Фланцевый ** (накрученные фланцы)

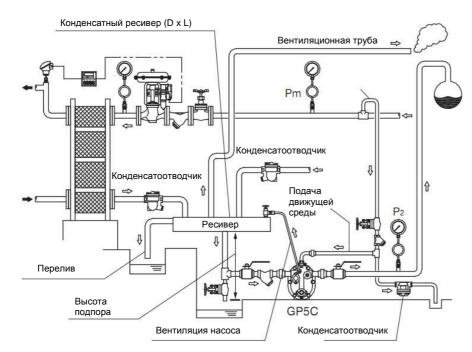


Примечание: все заглушки BSP 3/8"


() для исполнения из нерж. стали

Расходные характеристики

Присоединение	Резьбовой/фланцевый
Вход	1" / DN25
Выход	1" / DN25
Обратный клапан	
	Входной (встроенный)
	Выходной (встроенный)
Высота подпора	300 мм


• Корректирующий коэффициент Для GP5C, установленного с подпором, отличающимся от 300 мм (минимум 155мм)

Consulting & Engineering Service

Подпор и давления

Расчет пропускной способности осуществляется на основе типа движущей среды, давления движущей среды (Pm) и противодавления (P_2).

Необходимо быть уверенными что:

Расходная характеристика (согласно диаграмме) х корректирующий коэффициент > требуемого расхода

Примечания:

- GP5C должен применяться в открытых системах с конденсатным ресивером, соединенным с атмосферой.
- Давление движущей среды минус противодавление должно быть больше 0,5 бар.
- Диаметр трубопровода подачи движущей среды должен быть по крайней мере Ду15, внутренний диаметр трубы, а также фитинтов и клапанов должен быть не менее 8 мм.
- На линии подачи движущей среды необходимо установить фильтр грубой очистки с сеткой не менее 0,4 мм.

Расчет размера ресивера

Размер ресивера должен быть достаточным для хранения конденсата, пока **PowerTrap** находится в цикле перекачивания. Ресивер подбирается исходя из условия что, в ресивере находится не только конденсат, но и пар вторичного вскипания. Конденсат должен быть гарантированно отделен от пара вторичного вскипания, следовательно размер ресивера несколько выше, чем если бы в него поступала одна лишь жидкость. Если перекачивается доохлажденный конденсат, то в нем нет пара вторичного вскипания.

2) Расчет ресивера, есть пар вторичного вскипания (длина 1 м)

Пар вторичного вскипания (кг/ч)		Диаметр вентиляционной трубы (мм)	Диаметр переливной трубы
25	80	25	Должен быть равен диаметру входной
50	100	50	конденсатной трубы
75	125	50	Диаметр ресивера быть равен или выше
100	150	80	диаметра переливной трубы х 3.

Расчет ресивера, нет пара вторичного вскипания (длина 1 м)

Расход конденсата (кг/ч)	Диаметр ресивера (мм)
50 или ниже	25
100	40
200	40
300	50
400	65
500	80

• Длина ресивера может быть уменьшена в два раза, если давление движущей среды (Pm), деленное на противодавление (P2), больше или равно 2 (если Pm ÷ P₂ ≥ 2).

Consulting & Engineering Service

Для заметок:

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы" Адрес: г. Санкт-Петербург, ул. Курская, 27 Телефон / Факс: +7 812 655 08 95 / +7 812 655 08 96

www.steamsys.ru / паровыесистемы.рф

Manufacturer

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

(9/2016)